1) a) $\frac{7}{4}>\frac{10}{8}$
b) $\frac{8}{6}<\frac{5}{3}$

\square
2) a) $1 \frac{3}{4}>1 \frac{1}{2}$

b) $1 \frac{1}{4}<1 \frac{3}{8}$

\square
\square
3) a)

	$\frac{6}{3}$	$\frac{7}{6}$	$\frac{8}{12}$
Find the equivalent fractions:	$\frac{24}{12}$	$\frac{14}{12}$	$\frac{8}{12}$
Order the fractions:	$\frac{8}{12}$	$\frac{7}{6}$	$\frac{6}{3}$

b)

	$1 \frac{3}{4}$	$1 \frac{1}{8}$	$\frac{19}{16}$
Find the equivalent fractions:	$\frac{28}{16}$	$\frac{18}{16}$	$\frac{19}{16}$
Order the fractions:	$1 \frac{1}{8}$	$\frac{19}{16}$	$1 \frac{3}{4}$

1) a) Lucas has drawn the bar models which show $\frac{3}{4}$ and $\frac{5}{8}$ different sizes - the whole bar needs to be the same size. Also, he has only drawn one square to represent one whole.
b) Children may suggest that Lucas needs to improve his understanding of what a whole is and how it is used in a mixed number.
2) a) $\frac{1}{4}$

b) $\begin{array}{lllll}\frac{1}{4} & \frac{10}{8} & \frac{10}{4} & 3 & 3 \frac{3}{4}\end{array}$
3) Kwamena is correct.

Riley is wrong. Although one whole is larger than a fraction of a whole, an improper fraction is larger than one whole.

Sally is wrong. Although 8 is the larger numerator, we need to look at the denominators as well as the whole in the mixed number to tell which is the larger number or fraction.

1) a) $\frac{13}{12}<\frac{7}{6}$
b) $\quad 1 \frac{3}{4}<\frac{16}{8}$
c) $\frac{26}{16}=1 \frac{5}{8}$
2) Will \square
\square

\square
\square

Will ate the most cake overall.
3) Accept any problems that compare fractions greater than I.

