1)

$63 \div 3=$ \square

$$
63 \div 3=
$$

\square 21

$$
60 \div 3=20
$$

$$
3 \div 3=
$$

\square

$$
88 \div 4=22
$$

$$
56 \div 4=14
$$

$$
56 \div 4=14
$$

$$
40 \div 4=10 \quad 16 \div 4=
$$

\square
2)

3)

48 slices of pizza
12
52 biscuits 13

16 sandwiches
4
92 grapes 23

1) False. You must always start by dividing the digit in the tens column first. If you have any remaining tens, they can be exchanged for ten ones and then can be divided along with the ones. For example, $65 \div 5=13$

T	0
10	(1)
10	(1)
10	(1)
10	(1)
10	

10
2)

A is the odd one out because it represents the calculation $64 \div 4=16$ not $68 \div 4=17$ like the other calculations.
3) Amélie has not exchanged the remaining ten for ten ones. The answer should be 16 not II.

1) $84 p \div 1=84 p$
$84 p \div 4=21 p$
$84 p \div 6=14 p$
$84 p \div 12=7 p$
$84 p \div 28=3 p$
$84 p \div 2=42 p$
$84 p \div 14=6 p$
$84 p \div 42=2 p$
$84 p \div 3=28 p$
$84 p \div 7=12 p$
$84 p \div 21=4 p$
$84 p \div 84=1 p$
2) There are many possible answers to this problem and the children may find other alternatives.

Here are some possible solutions:

$$
\begin{array}{llll}
28 \div 4=63 \div 9<70 \div 1 & 64 \div 8=72 \div 9<51 \div 3 & 18 \div 3=42 \div 7<90 \div 5 & 32 \div 8=16 \div 4<90 \div 5 \\
28 \div 4=63 \div 9<70 \div 5 & 64 \div 8=72 \div 9<50 \div 1 & 18 \div 3=42 \div 7<90 \div 6 & 32 \div 8=16 \div 4<70 \div 5 \\
28 \div 4=63 \div 9<50 \div 1 & 64 \div 8=72 \div 9<53 \div 1 & 18 \div 3=42 \div 7<60 \div 5 &
\end{array}
$$

